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Introduction

The TELLURIDE project at Los Alamos is a
strategic computing effort aimed at producing
high fidelity simulations of metal solidification
processes. Its code provides numerical simula-
tions of solidification, fluid flow, heat transfer,
phase transformations, mechanical deformation,
and welding processes, on the kinds of meshes
seen in Figure1. The simulation of each compo-
nent is driven by a discretization of the continuum
equations describing the physical processes. The
components are then coupled in a way that de-
scribes their true physical interaction.

Figure 1. TypicalTELLURIDE Mesh.

The ability of projects like TELLURIDE to
model physical reality depends on several factors:
accurate numerical models, stable computer im-
plementations, realistic test data, and fast parallel
algorithms. So when the simulations are unable
to approximate reality, it can be quite difficult to
find where things went awry. However, prior to
executing any simulation, one can perform com-
ponent testing, whereby ensuring that each com-
ponent accurately models the physics it is sup-

posed to describe. Here, we investigate inaccu-
racies in the heat transfer component that are due
to a poor approximation of the heat flux using ex-
isting methodologies. Furthermore, we describe a
robust approximation scheme for calculating the
heat flux that is based on the support-operators
methodology [1].

Existing Flux Calculations

The flux calculations within the heat transfer
component arise within the nonlinear equation
that describes the temporal change of specific en-
thalpy. The equation is discretized using finite
volumes on a hexahedral mesh, and then flux val-
ues are computed on cell faces given cell-centered
temperature values. There are two approaches to
computing the flux. Both obtain the flux by com-
bining a gradient calculation with knowledge of
the conductivity and the normal vector. Where
they differ is how the gradient is computed. Ap-
proachA computes the gradient on each face via
the definition of the directional derivative. This
yields a gradient that depends on the difference
of the temperature values at the two adjacent cells
and the vector directed from one cell center to the
other. ApproachB is a much more sophisticated
algorithm that depends on surrounding cells. See
[2] for a detailed description. The limitations of
the two approaches are that approachA is inaccu-
rate for non-orthogonal meshes, while approach
B is inaccurate when there are jumps in the con-
ductivity.

Figure 2. Slice of Smooth 3D Mesh.

We observe the two approaches’ limitations for
a simple problem on the unit cube. Specifically,
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for a smooth meshing of the unit cube (Fig.2),
a conductivity and a temperature distribution are
defined. Then the normal component of the flux
is calculated for each face and its deviation from
the true value is measured. We use a conductivity
of κ = 1 for x≤ 1/2 andκ = 100 forx> 1/2, and
a temperature distribution given by

T(x,y,z) =
{

x, x≤ 1/2
1

200(2x+99), x > 1/2.

For a sequence of smooth grids like in Figure2,
we illustrate with the blue lines in Figure3 the
lack of convergence of the interior and boundary
root mean-squared error for approachA. We see
the same type of divergence for approachB.

Support-Operators Flux Calculations

The support-operators approach relies on the
support-operators discretization for diffusion-
type equations. Similar to the approachB
method, the computed flux depends on more than
just the two adjacent cell-centered temperature
values. However, in contrast to approachB,
the support-operators approach correctly incorpo-
rates conductivity information so that inaccura-
cies do not arise from discontinuous conductivi-
ties. Again, see [1] for further details.
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Figure 3. Illustration of lack of convergence for
existing approach (A/B), and illustration of con-
vergence for support-operators (SO) on a se-
quence of finer grids.

In the heat transfer we use support-operators in
the following way. To begin, we explicitly com-
pute a flux rather than taking an intermediate step

of computing a gradient. However, like approach
A, we do compute a vector for each face of each
cell that depends on the difference of the temper-
ature between the two adjacent cells. We then
employ this vector as the right-hand side of the
appropriate matrix problem, i.e., a system of the
form Au = f . Finally, we must solve this large
system of algebraic equations using an iterative
solution method. That is, we find the solution, say
u, by making an initial guess and then iteratively
improving it until we have the accuracy that we
desire. For the same problem for which approach
A showed no convergence, we get convergence
for the support-operators approach. This is seen
in red in Figure3.

Summary

The support-operators approach to heat flux
calculations offers a drastic improvement to the
current approaches when the mesh is severely
distorted or the conductivity jumps across mate-
rial interfaces. The approach however is more
costly. Yet, because all other approaches suffer
from their inaccuracies for more difficult prob-
lems, the cost of the support-operators approach
is an adequate price to pay. Moreover, in the
future, we will be investigating the accuracy of
more efficient local solution methods.
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